Adjustment to Subtle Time Constraints and Power Law Learning in Rapid Serial Visual Presentation
نویسندگان
چکیده
We investigated whether attention could be modulated through the implicit learning of temporal information in a rapid serial visual presentation (RSVP) task. Participants identified two target letters among numeral distractors. The stimulus-onset asynchrony immediately following the first target (SOA1) varied at three levels (70, 98, and 126 ms) randomly between trials or fixed within blocks of trials. Practice over 3 consecutive days resulted in a continuous improvement in the identification rate for both targets and attenuation of the attentional blink (AB), a decrement in target (T2) identification when presented 200-400 ms after another target (T1). Blocked SOA1s led to a faster rate of improvement in RSVP performance and more target order reversals relative to random SOA1s, suggesting that the implicit learning of SOA1 positively affected performance. The results also reveal "power law" learning curves for individual target identification as well as the reduction in the AB decrement. These learning curves reflect the spontaneous emergence of skill through subtle attentional modulations rather than general attentional distribution. Together, the results indicate that implicit temporal learning could improve high level and rapid cognitive processing and highlights the sensitivity and adaptability of the attentional system to subtle constraints in stimulus timing.
منابع مشابه
The effects of segmentation and redundancy methods on cognitive load and vocabulary learning and comprehension of English lessons in a multimedia learning environment
The present study was conducted with the aim of the effects of segmentation and redundancy methods on cognitive load and vocabulary learning and comprehension of English lessons in a multimedia learning environment.The purpose of this study is an applied research and a real experimental study. The statistical population of the present study includes all people aged 14 to 16 who are enrolled in ...
متن کاملA Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints
One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...
متن کاملMyocardial perfusion SPECT: Perfusion quantification
Different software tools for quantification of myocardial perfusion SPECT (MPS) studies are routinely used. Several perfusion parameters can be computed automatically. Interpretation of the MPS should start with visual inspection of the rotating planar images, visual analysis of reconstructed SPECT slices and then quantitative analysis to confirm the visual impression. Quantification should be...
متن کاملRapid Serial Auditory Presentation: A New Measure of Statistical Learning in Speech Segmentation.
The Rapid Serial Visual Presentation procedure is a method widely used in visual perception research. In this paper we propose an adaptation of this method which can be used with auditory material and enables assessment of statistical learning in speech segmentation. Adult participants were exposed to an artificial speech stream composed of statistically defined trisyllabic nonsense words. They...
متن کاملQUANTUM VERSION OF TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR OPTIMAL DESIGN OF CYCLIC SYMMETRIC STRUCTURES SUBJECT TO FREQUENCY CONSTRAINTS
As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space...
متن کامل